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Abstract
Spin–charge coupling is studied for a strongly confined two-dimensional hole
gas subject to a perpendicular magnetic field. The study is based on spin–charge
coupled drift–diffusion equations derived from quantum–kinetic equations in
an exact manner. The spin–orbit interaction induces an extra out-of-plane spin
polarization. This contribution exhibits a persistent oscillatory pattern in the
strong coupling regime.

1. Introduction

Recently, the study of spin-polarized transport in semiconductors has received much attention
because of its potential applications in the field of semiconductor spintronics. Many authors
have focused on spin–orbit interaction (SOI) that allows for purely electric manipulation of
spin polarization in semiconductors. Beside this useful feature, SOI also brings into play
the undesired spin relaxation due to the coupling between the momentum of charge carriers
and their spin (cf, for instance, [1]). Owing to this inhomogeneous broadening, each elastic
and inelastic scattering mechanism opens up a spin dephasing channel [2]. The character of
spin relaxation is quite different in systems with weak and strong SOI [3]. In the latter case,
the magnetization can oscillate even in the absence of external fields. In contrast, for weakly
spin–orbit coupled systems, the spin polarization decays exponentially unless it is permanently
stimulated by external fields.

The decay of spin polarization seems to be unavoidable because of the non-conservation
of the total spin. Nevertheless, a special persistent spin-precession pattern has been identified
recently [4]. The infinite spin lifetime of this persistent spin helix occurs in a combined Rashba–
Dresselhaus model at a certain wavevector that gives rise to a special spin rotation symmetry.
Furthermore, oscillations of the nonequilibrium spin density in real space, which is induced by
the Rashba SOI, have been reported in a number of recent papers [5–7]. These results on robust
spin oscillations certainly encourage further experimental and theoretical studies of long-lived
spin coherence states [8] in semiconductors with SOI.

In this paper, we focus on a strongly confined two-dimensional hole gas (2DHG) and study
the mutual influence of SOI and a perpendicular external magnetic field. It is well known that a
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quantizing perpendicular magnetic field appreciably changes the transport properties of a two-
dimensional electron gas (2DEG). The quantized energy spectrum manifests in Shubnikov–
de Haas oscillations of the resistivity and may lead to the quantum Hall effect. Due to the
SOI-induced splitting and crossing of Landau levels, a beating pattern arises in Shubnikov–
de Haas oscillations [9], which is used to determine the SOI strength from the measured
magnetoresistivity. Similar quantum oscillations have been identified in the spin-relaxation
rate [10]. Other studies [11–13] deal with the combined effects of Rashba and Dresselhaus
SOI on the magnetotransport in a 2DEG. Unfortunately, comparable investigations of a 2DHG
are limited although the SOI is much stronger in such systems. We mention the analysis of
transport equations for the 2DHG at zero magnetic field [14], the study of spin dephasing in
p-type semiconductor quantum wells [15], and the treatment of the spin Hall effect [16].

Our work is aimed to study the spin–charge coupled motion of holes in narrow quantum
wells subject to a perpendicular magnetic field. On the basis of a rigorous density-matrix
approach, spin–charge coupled drift–diffusion equations are derived for the 2DHG. In order to
focus on general physical properties of the SOI in semiconductors, we adopt the simple cubic
Rashba model that has been used in the literature [17–21] to simulate the SOI in a 2DHG.
This model has the striking peculiarity that there is no coupling between the spin and charge
components of the density matrix. One should contrast this finding with the linear Rashba
model, which is used to study effects of SOI in a 2DEG. In this model, the SOI leads to
a coupling between spin and charge degrees of freedom. For a 2DHG such a coupling is
exclusively induced by external fields. Here, we treat a magnetic field applied perpendicular
to the layer. Due to this field, the charge density and out-of-plane spin polarization couple to
each other in the 2DHG. Consequently, an inhomogeneous spin polarization induces charge
gradients, which are accompanied by an induced internal electric field calculated via Poisson’s
equation. The most interesting feature of our approach is, however, the observation that the
character of the magnetic-field-induced spin–charge coupling differs qualitatively in the weak
and strong coupling regimes. For weak SOI, the dephasing time becomes much larger than the
momentum-relaxation time so that the dominating mechanism is spin diffusion. In this regime,
the field-induced magnetization exhibits only a smooth exponential dependence on spatial
coordinates. Conversely, for strong SOI, the ballistic spin-transport regime is established, in
which oscillations of the out-of-plane magnetization can occur. An experimental verification
of this prediction would facilitate the technological exploitation of these long-lived spin states
for the fabrication of logic gates.

2. Basic theory

We treat coupled spin–charge excitations on the basis of an effective-mass Hamiltonian, which
refers to the heavy-hole band of thin p-type quantum wells and which has been adopted in
the literature [17–23] as an acceptable simple approximation. Our model includes short-range
spin-independent elastic scattering on impurities and a constant perpendicular magnetic field
B , from which only the Zeeman splitting is considered. The related heavy-hole Hamiltonian of
the cubic Rashba model has the second-quantized form

H =
∑

k,λ

a†
kλ [εk − εF] akλ −

∑

k,λ,λ′
(h̄ �ωk · �σ λλ′) a†

kλakλ′ + u
∑

k,k′

∑

λ

a†
kλak′λ, (1)

where a†
kλ (akλ) denote the creation (annihilation) operators with in-plane quasi-momentum

k = (kx, ky, 0) and spin λ. In equation (1), we introduced the Fermi energy εF, the vector of
Pauli matrices �σ , and the strength u of the ‘white-noise’ elastic impurity scattering, which gives
rise to the momentum-relaxation time τ . The heavy-hole band is described by the dispersion
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relation εk = h̄2k2/(2m). The coupling of spin states as described by

h̄ �ωk =
[
i
α

2
(k3

+ − k3
−),

α

2
(k3

+ + k3
−), h̄ωc

]
, (2)

is due to the Zeeman splitting h̄ωc = g∗μB B/2 and the SOI, the strength of which is denoted
by α. In equation (2), we have k± = kx ± iky , kx = k cos(ϕ), ky = k sin(ϕ), and h̄ωk = αk3.
Within the Born approximation with respect to elastic impurity scattering, the four components
( f, �f ) = (

∑
λ f λ

λ ,
∑

λ,λ′ f λ
λ′ �σλλ′) of the spin-density matrix f λ

λ′ satisfy the following Laplace-
transformed quantum–kinetic equations [24, 25]:

s f − ih̄

m
(κ ·k) f + i�ωκ(k) · �f = 1

τ
( f − f ) + f0, (3)

s �f + 2(�ωk × �f) − ih̄

m
(κ ·k) �f + i�ωκ (k) f = 1

τ
( �f − �f) + 1

τ

∂

∂εk

f h̄ �ωk − h̄ �ωk

τ

∂

∂εk

f + �f0,

(4)

in which the SOI-dependent vector

h̄ �ωκ(k) = 3α
[
(k2

y − k2
x)κy − 2kxkyκx , (k

2
x − k2

y)κx − 2kxkyκy, 0
]

(5)

couples the spin and charge degrees of freedom to each other. The wavevector κ refers to the
center-of-mass motion and disappears in models that refer to homogeneous spin and charge
distributions. Initial charge and spin densities are denoted by f0 = n and �f0, respectively. The
cross line over k-dependent functions indicates an integration over the polar angle ϕ of the
in-plane vector k. s denotes the variable of the Laplace transformation and takes over the role
of the time parameter t .

By treating the kinetic equations (3) and (4) in the long-wavelength limit, coupled spin–

charge drift–diffusion equations are derived for the angle-averaged spin-density matrix ( f , �f).
The method has already been applied to a 2DEG without any external fields [25]. In this
approach, it is assumed that carriers quickly re-establish thermal equilibrium. This fact justifies
the ansatz f (εk, κ | s) = n(εk)F(κ | s), where n(εk) denotes the Fermi distribution function.
Expanding the solution of equations (3) and (4) up to second order in κ and calculating the
integral over the angle ϕ, we obtain our main theoretical result, namely the following spin—
charge coupled drift–diffusion equations

(s + D0κ
2) f − �zκ

2 f z = n, (6)
(

s + 1

τsz
+ Dzκ

2

)
f z + �0 f = fz0, (7)

(σ 2
0 sτ + 2�2(2sτ + 1)) f x + Dxτκ2 f x − 2σ0ωcτ (1 + D̃τκ2) f y = (σ 2

0 + 2�2)τ fx,0, (8)

(σ 2
0 sτ + 2�2(2sτ + 1)) f y + Dxτκ2 f y + 2σ0ωcτ (1 + D̃τκ2) f x = (σ 2

0 + 2�2)τ fy,0, (9)

where we used the abbreviations σ0 = sτ + 1 and � = ωkτ . The k-dependent coefficients in
this set of equations have the form

D0 = D

σ 2
0

, �z = 24
h̄ωcτ

m
�2 σ 2

0 + 2�2

σ 2
0 (σ 2

0 + 4�2)2
, (10)

1

τsz
= 4�2

σ0τ
, Dz = D

σ 2
0 − 12�2

(σ 2
0 + 4�2)2

, �0 = − χ H

σ0μBτsz
, (11)

Dx = D
σ 6

0 + 24σ 2
0 �4 + 32�6

σ 2
0 (σ 2

0 + 4�2)2
, D̃ = D

4�2 − 3σ 2
0

(σ 2
0 + 4�2)2

, (12)

where we introduced the diffusion coefficient D = v2τ/2, the Bohr magneton μB, and
magnetic susceptibility χ . Equations (6)–(9) completely decouple in the absence of the external

3



J. Phys.: Condens. Matter 19 (2007) 476205 P Kleinert and V V Bryksin

magnetic field, when �z = �0 = ωc = 0. This is a peculiarity of the cubic Rashba model.
When a perpendicular magnetic field is applied to the 2DHG, a steady-state out-of-plane spin
polarization arises

f (0)
z = −h̄ωcn′ = χ H

μB
, (13)

which couples to the charge density. For a 2DEG the situation is different. In this case, the out-
of-plane spin polarization couples to the in-plane spin components [25]. The most surprising
feature of our solution is exhibited by the spin-diffusion coefficient Dz in equation (11),
the form of which agrees with a recently published result [14, 25] derived by an alternative
approach. This particular diffusion coefficient becomes negative for strong SOI (� > σ0/

√
12)

indicating an instability of the spin system. In this regime, spin diffusion has the tendency to
strengthen initial spin fluctuations. The competition between this self-strengthening and spin
relaxation leads to undamped spin oscillations that are characteristic for ballistic spin transport.
Such spin oscillations result from the coupling between the charge density and the out-of-plane
spin polarization expressed by equations (6) and (7). What is interesting is that this unusual
result for Dz can only be obtained by taking into account the off-diagonal elements of the
density matrix. (In fact, neglecting fx and fy in equation (4), we obtain simply Dz = D.)
Therefore, the oscillations in the strong SOI regime have a pure quantum-mechanical origin
that is manifested in the quasi-classical equations (6) and (7). Strictly speaking, this result
arises beyond the applicability of the drift–diffusion approach [25, 26].

The time dependence of the in-plane spin polarization as described by equations (8) and (9)
is governed by characteristic poles [24, 27] that are calculated from σ 2

0 sτ + 2�2(2sτ + 1) = 0.
Let us treat the strong coupling regime � � 1 for the in-plane spin polarization that is
determined by poles at sτ = −3/4 ± 2i�. Performing the inverse Laplace and Fourier
transformations, we obtain for the spectral spin polarization the result

f x(r, k | t) = exp

[
− r2

16Dt
− 3t

4τ

]{
cos(2ωk t)

t/τ
fx0 − ωcτ

2�
sin(2ωk t) fy0

}/
(32π D), (14)

f y(r, k | t) = exp

[
− r2

16Dt
− 3t

4τ

]{
cos(2ωk t)

t/τ
fy0 + ωcτ

2�
sin(2ωk t) fx0

}/
(32π D), (15)

which describes damped oscillations of an initially at r = 0 injected spin packet. The external
magnetic field couples initial nonvanishing in-plane spin components to each other. A spot-
like initial in-plane spin polarization could be produced in experiment by a short laser pulse.
The evolution of this initial inhomogeneous spin distribution is described by equations (14)
and (15).

3. Spin polarization for a stripe geometry

In this section, the magnetic-field-induced coupling between the charge distribution f and the
out-of-plane spin polarization f z in a 2DHG is treated in more detail for a stripe of width
2L oriented along the x axis. To this end, the steady-state solution (s = 0, σ0 = 1) of
equations (6) and (7) is transformed back to the representation in spatial coordinates x and
y. Due to the stripe geometry considered, the densities are independent of x . The variation
of the charge density f (k, y) induces a self-consistent internal electric field Ey(k, y) that is
calculated from the Poisson equation. This internal in-plane electric field is a by-product of the
spin–charge coupling. Its reaction to the spin is accounted for by drift terms in equations (6)
and (7). The phenomenological consideration in equation (6) for the carrier density is ruled by
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the concept of an effective chemical potential [24]. Motivated by studies of electric-field effects
on spin transport, we introduce a similar contribution in equation (7) for the out-of-plane spin
polarization. Putting all this together, the following set of coupled equations for spin–charge
excitations are obtained:

D(k) f
′
(k, y) − μEy(k, y) f (k, y) − �z(k) f

′
z(k, y) = 0, (16)

Dz(k) f
′′
z (k, y) − μEy(k, y) f

′
z(k, y) − 1

τsz(k)
f z(k, y) − �0(k) f (k, y) = 0, (17)

E ′
y(k, y) = 4πe

ε
( f (k, y) − n(k)), (18)

in which μ = eτ/m denotes the mobility and ε is the dielectric constant. Primes indicate
derivatives with respect to y. We derive an analytical solution of these equations by calculating
the lowest-order contributions in the induced electric field Ey . Within this perturbational
schema, we make the ansätze f = n + � f and f z = f (0)

z + � f z , where the corrections result
from the spin–charge coupling � f , � f z ∼ Ey . In addition, hard-wall boundary conditions
� f z(±L) = 0 and the existence of interface charges Ey(±L) = ±E0 are assumed. We obtain
the analytic solution

� f z = λ1λ2 E0�0

4πe/ε

cosh(λ2 L) cosh(λ1 y) − cosh(λ1 L) cosh(λ2 y)

N(L)
,

Ey

E0
= N(y)

N(L)
, (19)

where λ1,2 are calculated from the secular equation
(

Dλ2 − 4πe

ε
μn

) (
Dzλ

2 − 1

τsz

)
− λ2�0�z = 0. (20)

In equation (19), the abbreviation

N(y) = λ2

(
Dzλ

2
1 − 1

τsz

)
cosh(λ2 L) sinh(λ1 y) − λ1

(
Dzλ

2
2 − 1

τsz

)
cosh(λ1 L) sinh(λ2 y)

(21)

was introduced. For weak magnetic fields ωcτ � 1, we obtain the final result

� fz(εk, y) = − eE0χ Hλ2
1L3

D

μB(1 − (λ1 LD)2)
coth(L/LD)

{
cosh(y/LD)

cosh(L/LD)
− cosh(λ1 y)

cosh(λ1 L)

}
dn(εk)

dεk

, (22)

with

λ1 = 1/
√

Dzτsz, λ2 = √
4πeμn/(Dε) = L−1

D , (23)

where LD denotes the Debye screening length. Again, we meet a peculiarity of the cubic
Rashba model for a 2DHG. The final integral over the energy εk is easily calculated at low
temperatures. Due to the factor dn(εk)/dεk, the field-induced spin polarization is exclusively
determined by energies at the Fermi surface for a degenerate hole gas. Therefore, the recently
studied inhomogeneous broadening [15] due to elastic scattering is ineffective in this regime.
This speciality has to be contrasted with the spin polarization, which is due to an applied electric
field [28]. With increasing strength of the SOI, the electric-field induced spin polarization also
changes its character from a smooth to an oscillatory dependence. This transition has the same
origin, namely the change of sign of the diffusion coefficient Dz . However, the result for
the electric-field mediated spin polarization was obtained for the spectral density that depends
still on εk so that the integral over εk leads to a weakening of spin oscillations (in [28] it was
assumed that only states at εkF contribute at low temperatures). In contrast, equation (22) for
the spectral spin density proves that at zero temperature only states at the Fermi energy play a
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Figure 1. SOI-induced out-of-plane spin polarization obtained from equation (22) by integrating
over εk (indicated by 〈· · ·〉). At zero temperature, all quantities are calculated at the Fermi
momentum kF. Parameters used in the calculation are: kF = 0.1 nm−1, mα/h̄2 = 2 nm,
E0 = 100 V cm−1, and n = 1015 cm−3. The thick and thin lines refer to weak (� = 0.173,
τ = 0.05 ps) and strong (� = 0.34, τ = 0.1 ps) spin–orbit coupling, respectively.

role so that magnetic-field induced oscillations of � fz are not smoothed out by the final integral
over εk . Consequently, only inelastic scattering, which we disregarded in this work, may play
an essential role for the formation of a persistent oscillatory spin pattern at strong SOI.

The character of the solution for the out-of-plane spin polarization mainly depends on the
strength of the SOI. In weakly coupled systems (� < 1/

√
12, Dz > 0), the spin polarization

exhibits an exponential dependence as shown by the thick line in figure 1. The self-consistent
coupling between spin and charge degrees of freedom leads to an excess magnetization at
the boundaries of the stripe. The picture changes dramatically when we consider the strong
coupling regime (� > 1/

√
12, Dz < 0). In this case, the wavenumber λ1 becomes imaginary,

giving rise to spin-coherent oscillations. An example for this persistent spin pattern is shown
by the thin line in figure 1. Despite the elastic scattering on impurities included, the spin
lifetime of these oscillations is infinite in the strong coupling regime. Moreover, the oscillation
amplitude is considerably enhanced at the resonance λ1 L = (2n + 1)π/2 with n being any
integer. A similar enhancement has been predicted for the SOI-induced zitterbewegung [29].
This observation also reminds us of a Fabry–Perot interferometer in optics. Like the finesse of
the interferometer diverging for perfect reflective mirrors, the amplitude of the spin oscillations
becomes infinite for the above mentioned particular values of the spin–orbit coupling and the
width of the stripe. This idealized behavior indicates that beside elastic scattering on impurities,
other spin-relaxation mechanisms also have to be taken into account for a more realistic
description of spin excitations at strong SOI. The experimental observation of the interesting
persistent oscillatory spin structure is certainly challenging. It requires a spin detection set-
up with a high spatial resolution (the typical wavelength of the oscillations is of the order of
100 nm). As the magnetic field leads to a coupling between the out-of-plane spin polarization
and the charge density, the induced internal electric field and the charge density exhibit similar
oscillations in the strong coupling regime.

4. Summary

We studied a 2DHG with SOI and elastic impurity scattering under the influence of a
perpendicular magnetic field. Applying an exact procedure, spin–charge coupled drift–
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diffusion equations were derived from quantum–kinetic equations for the spin-density matrix.
The magnetic field mainly causes a coupling between the out-of-plane spin polarization and
the charge density. The character of the effects that result from this coupling strongly depends
on the strength of the SOI. For weak SOI (� < 1/

√
12), spin diffusion gives rise to an

exponential decay of an initial spin polarization. In contrast, for strong SOI, the spin transport
exhibits ballistic character so that oscillations of the magnetization can occur. This general
conclusion was illustrated by a treatment of the spin polarization in a stripe composed of a
2DHG. The magnetic field induces a background magnetization that is superimposed by a
contribution stemming from the SOI. The excess magnetization, which results from the spin–
charge coupling, exhibits a persistent oscillatory spin pattern for systems with strong spin–orbit
coupling. Similar standing and propagating spin oscillations with wavelength down to several
nanometers have been treated for thin magnetic film samples [30]. The application of this
mechanism for spin-wave logic gates depends on whether short-wavelength spin oscillations
can be manipulated and detected by a suitable experimental set-up.
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[15] Lü C, Cheng J L and Wu M W 2006 Phys. Rev. B 73 125314
[16] Wu M W and Zhou J 2005 Phys. Rev. B 72 115333
[17] Gerchikov L G and Subashiev A V 1992 Sov. Phys.—Semicond. 26 73
[18] Winkler R, Noh H, Tutuc E and Shayegan M 2002 Phys. Rev. B 65 155302
[19] Habib B, Tutuc E, Melinte S, Shayegan M, Wassermann D and Lyon S A 2004 Appl. Phys. Lett. 85 3151
[20] Schliemann J and Loss D 2005 Phys. Rev. B 71 085308
[21] Liu S Y and Lei X L 2005 Phys. Rev. B 72 155314
[22] Nomura K, Wunderlich J, Sinova J, Kaestner B, MacDonald A H and Jungwirth T 2005 Phys. Rev. B 72 245330
[23] Zarea M and Ulloa S E 2006 Phys. Rev. B 73 165306
[24] Bryksin V V and Kleinert P 2006 Phys. Rev. B 73 165313
[25] Bryksin V V and Kleinert P 2007 Phys. Rev. B 75 205317
[26] Stanescu T D and Galitski V 2007 Phys. Rev. B 75 125307
[27] Mishchenko E G, Shytov A V and Halperin B I 2004 Phys. Rev. Lett. 93 226602
[28] Kleinert P and Bryksin V V 2007 Phys. Rev. B 76 073314
[29] Schliemann J, Loss D and Westervelt R M 2005 Phys. Rev. Lett. 94 206801
[30] Kruglyak V V and Hicken R J 2006 J. Magn. Magn. Mater. 306 191

7

http://dx.doi.org/10.1088/0268-1242/19/2/017
http://dx.doi.org/10.1103/PhysRevB.61.2945
http://dx.doi.org/10.1103/PhysRevB.71.195329
http://dx.doi.org/10.1103/PhysRevLett.97.236601
http://dx.doi.org/10.1103/PhysRevB.73.033316
http://dx.doi.org/10.1103/PhysRevB.74.195308
http://dx.doi.org/10.1103/PhysRevB.74.205307
http://dx.doi.org/10.1103/PhysRevB.71.155317
http://dx.doi.org/10.1103/PhysRevB.67.085313
http://dx.doi.org/10.1103/PhysRevB.69.245312
http://dx.doi.org/10.1103/PhysRevB.67.085302
http://dx.doi.org/10.1103/PhysRevB.73.045303
http://dx.doi.org/10.1088/0305-4470/39/29/L04
http://dx.doi.org/10.1103/PhysRevB.74.193316
http://dx.doi.org/10.1103/PhysRevB.73.125314
http://dx.doi.org/10.1103/PhysRevB.72.115333
http://dx.doi.org/10.1103/PhysRevB.65.155303
http://dx.doi.org/10.1063/1.1806543
http://dx.doi.org/10.1103/PhysRevB.71.085308
http://dx.doi.org/10.1103/PhysRevB.72.155314
http://dx.doi.org/10.1103/PhysRevB.72.245330
http://dx.doi.org/10.1103/PhysRevB.73.165306
http://dx.doi.org/10.1103/PhysRevB.73.165313
http://dx.doi.org/10.1103/PhysRevB.75.205317
http://dx.doi.org/10.1103/PhysRevB.75.125307
http://dx.doi.org/10.1103/PhysRevLett.93.226602
http://dx.doi.org/10.1103/PhysRevB.76.073314
http://dx.doi.org/10.1103/PhysRevLett.94.206801
http://dx.doi.org/10.1016/j.jmmm.2006.02.242

	1. Introduction
	2. Basic theory
	3. Spin polarization for a stripe geometry
	4. Summary
	Acknowledgments
	References

